

#### 'समानो मन्त्रः समितिः समानी'

#### UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 6th Semester Examination, 2023

#### **DSE-P4-MATHEMATICS**

Time Allotted: 2 Hours Full Marks: 60

The figures in the margin indicate full marks. Symbols have their usual meanings.

# The question paper contains DSE-4A and DSE-4B. Candidates are required to answer any *one* from the *two* courses and they should mention it clearly on the Answer Book.

#### DSE-4A

#### **DIFFERENTIAL GEOMETRY**

#### **GROUP-A**

#### Answer any four questions from the following

 $3 \times 4 = 12$ 

- 1. If  $\vec{r} = \vec{r}(s)$  is the position vector of a point P with arc-length as parameter on a curve- $\gamma$ , then show that  $\kappa^2 \tau = [\vec{r}', \vec{r}'', \vec{r}''']$ .
- 2. Obtain the equation of the circular helix  $r = (a \cos u, a \sin u, bu), -\infty < u < \infty$ , where a > 0, referred to s as parameter.
- 3. Determine f(u) so that the curve  $r = (a \cos u, a \sin u, f(u))$  shall be a plane.
- 4. Find the involutes of a helix.
- 5. Calculate the torsion of the cubic curve  $r = (u, u^2, u^3)$ .
- 6. Show that the surface  $e^z \cos x = \cos y$  is minimal.

#### **GROUP-B**

#### Answer any four questions from the following

 $6 \times 4 = 24$ 

3

- 7. Show that the radius of curvature  $\rho$  and radius of torsion  $\sigma$  of the curve  $r = (a\cos u, a\sin u, a\cos 2u)$  at  $u = \frac{\pi}{4}$  are  $\rho = \frac{5a}{4}$  and  $\sigma = \frac{5a}{6}$ .
- 8. (a) Find the equation of the osculating plane at a point u of the curve  $r = (a \cos u, a \sin u, bu)$ 
  - (b) Find the Serret-Frenet approximation of the curve  $r = (\cos u, \sin u, u)$  at  $u = \frac{\pi}{2}$ .

#### UG/CBCS/B.Sc./Hons./6th Sem./Mathematics/MATHDSE4/2023

- 9. Prove that the tangent plane to the surface  $xyz = a^3$  and the coordinate planes bound a constant volume.
- 10. Define developable surface. Prove that a surface is developable if and only if the specific curvature is zero at all points.
- 11. Find the curvature and torsion of the locus of centre of spherical curvature. 3+3
- 12.(a) Prove that the asymptotic lines are orthogonal if and only if the surface is minimal.
  - (b) Show that the parametric curve on the surface  $(u\cos v, u\sin v, v)$  are asymptotic lines.

#### **GROUP-C**

#### Answer any two questions

- $12 \times 2 = 24$
- 13.(a) Show that the necessary and sufficient condition that a curve be a helix is that  $[r^{IV}, r''', r'''] = -\kappa^5 \frac{d}{ds} \left(\frac{\tau}{\kappa}\right) = 0.$ 
  - (b) Prove that the geodesic curvature of a geodesic on a surface is zero and conversely.
- 14. Prove that the shortest distance between the principal normal at two consecutive points on a curve is

$$\frac{\rho ds}{\sqrt{\rho^2 + \sigma^2}}$$

and the line of this distance divides the radius of curvature in the ratio  $\rho^2$ :  $\sigma^2$ .

- 15.(a) Define first fundamental form. Prove that the first fundamental form is invariant under a transformation of parameters.
  - (b) Show that the curve r = r(s) is asymptotic line if only if  $\frac{dr}{ds} \cdot \frac{dN}{ds} = 0$ , where N is the surface normal. Write the necessary and sufficient condition for a curve to be a geodesic.
- 16.(a) Prove that the curves of the family  $\frac{v^3}{u^2}$  = constant are geodesics on a surface with the metric  $ds^2 = v^2 du^2 2uv du dv + 2u^2 dv^2$ , u > 0, v > 0.
  - (b) Define normal curvature. Find the normal curvature of the right angular helicoid  $r(u, v) = (u \cos v, u \sin v, cv)$  at a point on it.

6075

#### DSE-4B

#### THEORY OF EQUATIONS

### GROUP-A Answer any four questions

## 1. If $\alpha$ , $\beta$ , $\gamma$ are the roots of the equation $x^3 + px^2 + qx + r = 0$ , then find the value of $(\alpha + \beta)(\beta + \gamma)(\gamma + \alpha)$ .

2. Find the remainder when 
$$2x^4 - 6x^3 + 7x^2 - 5x + 1$$
 is divided by  $(2x - 3)$ .

3. Solve the equation 
$$4x^4 - 4x^3 - 13x^2 + 9x + 9 = 0$$
 given that the sum of two roots is zero.

4. Reduce the reciprocal equation 
$$x^5 - 6x^4 + 7x^3 + 7x^2 - 6x + 1 = 0$$
 to its standard form

5. Apply Descartes' rule of sign to determine the nature of the roots of the equation 
$$x^{10} - 1 = 0$$
.

6. Obtain the equation whose roots are twice the roots of the equation 
$$x^3 + 3x^2 + 4x + 5 = 0$$
.

#### **GROUP-B**

#### **Answer any** *four* **questions** $6 \times 4 = 24$

 $3 \times 4 = 12$ 

7. If 
$$\alpha$$
 be an imaginary root of the equation  $x^7 - 1 = 0$ , find the equation whose roots are  $\alpha + \alpha^6$ ,  $\alpha^2 + \alpha^5$ ,  $\alpha^3 + \alpha^4$ .

8. Solve the following equation by Ferrari's method: 
$$x^4 + 12x - 5 = 0$$

9. Apply Sturm's theorem to prove that the equation 
$$x^3 - 7x + 7 = 0$$
 has two roots lying between 1 and 2, and one root lying between  $-4$  and  $-3$ .

10.(a) Show that the equation 
$$2x^7 + 3x^4 + 3x + k = 0$$
 has at least four complex roots for all values of  $k$ .

(b) If 
$$\alpha$$
 is a root of the equation  $x^4 + px^3 - 6x^2 - px + 1 = 0$ , then prove that  $\frac{1+\alpha}{1-\alpha}$  is also a root of it.

11.(a) Find the multiple roots of the equation 
$$x^4 - 2x^3 - 11x^2 + 12x + 36 = 0.$$

(b) Find the value of 
$$x^3 - 7x^2 - 2x + 88$$
 when  $x = 5 + i\sqrt{3}$ .

#### UG/CBCS/B.Sc./Hons./6th Sem./Mathematics/MATHDSE4/2023

- 12.(a) Find the equation whose roots are squares of the differences of the roots of the equation  $x^3 + x + 2 = 0$ .
  - (b) Transform the equation  $x^4 + 4x^3 + 7x^2 + 6x 4 = 0$  into one in which the terms involving  $x^3$  is absent.

#### **GROUP-C**

#### Answer any two questions

 $12 \times 2 = 24$ 

4

- 13.(a) If  $(x^2 + px + 1)$  be a factor of  $(ax^3 + bx + c)$ , then prove that  $a^2 c^2 = ab$ .
  - (b) If the equation  $x^n nqx + (n-1)r = 0$  has a pair of equal roots, show that  $q^n = r^{n-1}$ .
  - (c) Show that if the equation  $x^3 ax^2 + bx c = 0$  has a pair of roots of the form  $\alpha(1 \pm i)$  where  $\alpha$  is real, then  $(a^2 2b)(b^2 2ac) = c^2$ .
- 14.(a) If  $\alpha$ ,  $\beta$ ,  $\gamma$  are the roots of the equation  $x^3 3x^2 + x 1 = 0$ , then find the equation whose roots are

$$\alpha\beta + \frac{1}{\alpha} - \frac{1}{\beta}, \beta\gamma + \frac{1}{\beta} - \frac{1}{\gamma}, \gamma\alpha + \frac{1}{\gamma} - \frac{1}{\alpha}.$$

- (b) If  $\frac{p}{q}$  is a root of  $a_0x^n + a_1x^{n-1} + ... + a_{n-1}x + a_n = 0$ , where  $a_0, a_1, ..., a_{n-1}, a_n$  are integers and p, q are integers prime to each other, then prove that q is a factor of  $a_0$  and p is a factor of  $a_n$ .
- 15.(a) If  $\alpha_1, \alpha_2, ..., \alpha_n$  be the roots of  $x^n + p_1 x^{n-1} + ... + p_{n-1} x + p_n = 0$ , then find the value of  $(\alpha_1^2 + 1)(\alpha_2^2 + 1)...(\alpha_n^2 + 1)$ .
  - (b) If  $\alpha$ ,  $\beta$ ,  $\gamma$  are the roots of  $x^3 + px + q = 0$ , prove that  $6S_5 = 5S_2S_3$ , where  $S_r = \sum \alpha^r$ .
- 16.(a) Find the relation between a, b, c, d so that the product of two roots of the equation  $x^4 + ax^3 + bx^2 + cx + d = 0$  is 1.
  - (b) Show that the equation  $(x-a)^3 + (x-b)^3 + (x-c)^3 + (x-d)^3 = 0$ , where a, b, c, d are positive and not all equal, has only one real root.

\_\_\_\_×\_\_\_

6075 4