'समानो मन्त्र: समितिः समानी'

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 6th Semester Examination, 2023

DSE-P4-MATHEMATICS

Time Allotted: 2 Hours
Full Marks: 60
The figures in the margin indicate full marks.
Symbols have their usual meanings.

The question paper contains DSE-4A and DSE-4B. Candidates are required to answer any one from the two courses and they should mention it clearly on the Answer Book.

DSE-4A
 Differential Geometry
 GROUP-A

Answer any four questions from the following

1. If $\vec{r}=\vec{r}(s)$ is the position vector of a point P with arc-length as parameter on a curve- γ, then show that $\kappa^{2} \tau=\left[\vec{r}^{\prime}, \vec{r}^{\prime \prime}, \vec{r}^{\prime \prime \prime}\right]$.
2. Obtain the equation of the circular helix $r=(a \cos u, a \sin u, b u),-\infty<u<\infty$, where $a>0$, referred to s as parameter.
3. Determine $f(u)$ so that the curve $r=(a \cos u, a \sin u, f(u))$ shall be a plane.
4. Find the involutes of a helix.
5. Calculate the torsion of the cubic curve $r=\left(u, u^{2}, u^{3}\right)$.
6. Show that the surface $e^{z} \cos x=\cos y$ is minimal.

GROUP-B

Answer any four questions from the following
$6 \times 4=24$
7. Show that the radius of curvature ρ and radius of torsion σ of the curve
$r=(a \cos u, a \sin u, a \cos 2 u)$ at $u=\frac{\pi}{4}$ are $\rho=\frac{5 a}{4}$ and $\sigma=\frac{5 a}{6}$.
8. (a) Find the equation of the osculating plane at a point u of the curve
$r=(a \cos u, a \sin u, b u)$
(b) Find the Serret-Frenet approximation of the curve $r=(\cos u, \sin u, u)$ at $u=\frac{\pi}{2}$.

UG/CBCS/B.Sc./Hons./6th Sem./Mathematics/MATHDSE4/2023

9. Prove that the tangent plane to the surface $x y z=a^{3}$ and the coordinate planes bound a constant volume.
10. Define developable surface. Prove that a surface is developable if and only if the specific curvature is zero at all points.
11. Find the curvature and torsion of the locus of centre of spherical curvature.
12.(a) Prove that the asymptotic lines are orthogonal if and only if the surface is minimal.
(b) Show that the parametric curve on the surface $(u \cos v, u \sin v, v)$ are asymptotic lines.

GROUP-C

Answer any two questions

13.(a) Show that the necessary and sufficient condition that a curve be a helix is that $\left[r^{I V}, r^{\prime \prime \prime}, r^{\prime \prime}\right]=-\kappa^{5} \frac{d}{d s}\left(\frac{\tau}{\kappa}\right)=0$.
(b) Prove that the geodesic curvature of a geodesic on a surface is zero and conversely.
14. Prove that the shortest distance between the principal normal at two consecutive points on a curve is

$$
\frac{\rho d s}{\sqrt{\rho^{2}+\sigma^{2}}}
$$

and the line of this distance divides the radius of curvature in the ratio $\rho^{2}: \sigma^{2}$.
15.(a) Define first fundamental form. Prove that the first fundamental form is invariant under a transformation of parameters.
(b) Show that the curve $r=r(s)$ is asymptotic line if only if $\frac{d r}{d s} \cdot \frac{d N}{d s}=0$, where N is the surface normal. Write the necessary and sufficient condition for a curve to be a geodesic.
16.(a) Prove that the curves of the family $\frac{v^{3}}{u^{2}}=$ constant are geodesics on a surface with the metric $d s^{2}=v^{2} d u^{2}-2 u v d u d v+2 u^{2} d v^{2}, u>0, v>0$.
(b) Define normal curvature. Find the normal curvature of the right angular helicoid $r(u, v)=(u \cos v, u \sin v, c v)$ at a point on it.

DSE-4B
 Theory of Equations
 GROUP-A

Answer any four questions

1. If α, β, γ are the roots of the equation $x^{3}+p x^{2}+q x+r=0$, then find the value of $(\alpha+\beta)(\beta+\gamma)(\gamma+\alpha)$.
2. Find the remainder when $2 x^{4}-6 x^{3}+7 x^{2}-5 x+1$ is divided by $(2 x-3)$.
3. Solve the equation $4 x^{4}-4 x^{3}-13 x^{2}+9 x+9=0$ given that the sum of two roots is zero.
4. Reduce the reciprocal equation $x^{5}-6 x^{4}+7 x^{3}+7 x^{2}-6 x+1=0$ to its standard form.
5. Apply Descartes' rule of sign to determine the nature of the roots of the equation $x^{10}-1=0$.
6. Obtain the equation whose roots are twice the roots of the equation $x^{3}+3 x^{2}+4 x+5=0$.

GROUP-B

Answer any four questions

7. If α be an imaginary root of the equation $x^{7}-1=0$, find the equation whose roots are $\alpha+\alpha^{6}, \alpha^{2}+\alpha^{5}, \alpha^{3}+\alpha^{4}$.
8. Solve the following equation by Ferrari's method:

$$
x^{4}+12 x-5=0
$$

9. Apply Sturm's theorem to prove that the equation $x^{3}-7 x+7=0$ has two roots lying between 1 and 2 , and one root lying between -4 and -3 .
10.(a) Show that the equation $2 x^{7}+3 x^{4}+3 x+k=0$ has at least four complex roots for all values of k.
(b) If α is a root of the equation $x^{4}+p x^{3}-6 x^{2}-p x+1=0$, then prove that $\frac{1+\alpha}{1-\alpha}$ is also a root of it.
11.(a) Find the multiple roots of the equation

$$
x^{4}-2 x^{3}-11 x^{2}+12 x+36=0
$$

(b) Find the value of $x^{3}-7 x^{2}-2 x+88$ when $x=5+i \sqrt{3}$.

UG/CBCS/B.Sc./Hons./6th Sem./Mathematics/MATHDSE4/2023

12.(a) Find the equation whose roots are squares of the differences of the roots of the equation $x^{3}+x+2=0$.
(b) Transform the equation $x^{4}+4 x^{3}+7 x^{2}+6 x-4=0$ into one in which the terms involving x^{3} is absent.

GROUP-C

Answer any two questions

13.(a) If $\left(x^{2}+p x+1\right)$ be a factor of $\left(a x^{3}+b x+c\right)$, then prove that $a^{2}-c^{2}=a b$.
(b) If the equation $x^{n}-n q x+(n-1) r=0$ has a pair of equal roots, show that $q^{n}=r^{n-1}$.
(c) Show that if the equation $x^{3}-a x^{2}+b x-c=0$ has a pair of roots of the form $\alpha(1 \pm i)$ where α is real, then $\left(a^{2}-2 b\right)\left(b^{2}-2 a c\right)=c^{2}$.
14.(a) If α, β, γ are the roots of the equation $x^{3}-3 x^{2}+x-1=0$, then find the equation whose roots are

$$
\alpha \beta+\frac{1}{\alpha}-\frac{1}{\beta}, \beta \gamma+\frac{1}{\beta}-\frac{1}{\gamma}, \gamma \alpha+\frac{1}{\gamma}-\frac{1}{\alpha} .
$$

(b) If $\frac{p}{q}$ is a root of $a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n-1} x+a_{n}=0$, where $a_{0}, a_{1}, \ldots, a_{n-1}, a_{n}$ are integers and p, q are integers prime to each other, then prove that q is a factor of a_{0} and p is a factor of a_{n}.
15.(a) If $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be the roots of $x^{n}+p_{1} x^{n-1}+\ldots+p_{n-1} x+p_{n}=0$, then find the value of $\left(\alpha_{1}^{2}+1\right)\left(\alpha_{2}^{2}+1\right) \ldots\left(\alpha_{n}^{2}+1\right)$.
(b) If α, β, γ are the roots of $x^{3}+p x+q=0$, prove that $6 S_{5}=5 S_{2} S_{3}$, where $S_{r}=\Sigma \alpha^{r}$.
16.(a) Find the relation between a, b, c, d so that the product of two roots of the equation $x^{4}+a x^{3}+b x^{2}+c x+d=0$ is 1 .
(b) Show that the equation $(x-a)^{3}+(x-b)^{3}+(x-c)^{3}+(x-d)^{3}=0$, where a, b, c, d are positive and not all equal, has only one real root.

